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Abstract—This paper studies a cognitive network where licensed
primary users and unlicensed but ‘cognitive’ secondary users
share spectrum. Many system design parameters affect the joint
performance, e.g., outage and capacity, seen by the two user
types in such a scenario. We explore the sometimes subtle system
tradeoffs that arise in such networks. To that end, we propose a
new simple stochastic geometric model that captures the salient
interdependencies amongst spatially distributed primary and sec-
ondary nodes. The model allows us to evaluate the performance
dependencies between primary and secondary transmissions in
terms of the outage probability, node density and transmission
capacity. From the design perspective the key design parameters
determining the joint transmission capacity and tradeoffs, are
the detection radius (detection SINR threshold), decoding SINR
threshold, burstiness of coverage and/or transmit powers. We show
how the joint transmission capacity region can be optimized or
affected by these parameters.

Index Terms—cognitive network, stochastic geometry, network
information theory, transmission capacity

I. INTRODUCTION

FCC and researchers have observed the scarcity and the
underutilization of spectrum resources which suggests that a
new model of spectrum usage is required, usually referred to
as cognitive radio/network, see e.g., [1]. The basic approach is
to allow unlicensed or secondary devices to opportunistically
access a spectrum allocated to licensed or primary devices.
The focus of this paper is on the transmission capacity of
cognitive networks, in particular on characterizing the spatial
or temporal spectrum opportunities for secondary devices and
their interaction with primary devices.
Specifically, we model primary transmitters (PTx) corre-

sponding to high-power broadcasting towers, e.g., a fixed or
mobile TV broadcasting station, sending the same signal to
multiple primary receivers (PRx). This is usually called a single
frequency network (SFN). The coverage of a single PTx is rela-
tively large, e.g., tens of kilometers, and receivers can success-
fully decode the signal if they belong to the coverage area of
at least one transmit station. Signals from different stations are
treated as delayed multi-path. Cognitive or secondary devices
can transmit in regions where the primary signal is not detected.
PTxs are not aware of the existence of secondary devices and
the same secondary network characteristics are assumed where
secondary transmitters (STx) and receivers (SRx) are involved
in ad-hoc or peer-to-peer low power transmissions.

Related work: In [2] and numerous subsequent papers
(see survey in [3]) various spatial models have been introduced
where nodes are randomly distributed on a plane and signal
attenuation is a function of an attenuation factor and of the dis-
tance between transmitter and receiver. In addition, [4], [5] and
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[6] explored the capacity of networks in terms of transmission
capacity, which measures transmitted bits per second per meter
square. Their models capture the subtle interactions between
nodes in terms of outage, so they allow the computation of
the exact capacity rather than the scaling behavior. However,
most of this work focuses on capacity analysis for homogeneous
networks.
Recently, above methodologies have been extended to eval-

uate the performance of multiple networks with different prior-
ities in the context of cognitive networks; for example, [7], [8]
focus on scaling laws for “two networks with different access
priority". In their work, primary and secondary networks are
found to have the same capacity scaling law Θ(

√

n/ logn) and
Θ(

√

m/ logm) where n andm correspond to the primary/ sec-
ondary receiver densities. [9] studied the impact of transmission
power of secondary nodes on the reliability of detection perfor-
mance and the transmission opportunity for secondary nodes.
However, this work considers only a single secondary node
with randomly distributed multiple primary nodes. Overlaid
spectrum sharing between two different networks was studied
in [10], where the mobile ad-hoc devices are overlaid with
uplink transmissions of an existing cellular network and the
capacity trade-off between two networks was characterized.
However, in this work, the secondary nodes do not have spatial
detection or cognitive function. [11] studied cognitive networks
with single primary and multiple secondary transmitters. A
bound on the radius of the primary exclusive region, i.e., where
the primary transmitter can communicate with its receivers
under an outage constraint, was found based on various system
parameters. [12] considered a cognitive network where nodes
access medium using CSMA protocol with two different types
of access priorities.

Contributions: In this paper, we model both primary
and secondary devices as point processes, which allows us to
capture the impact from both PTxs and STxs to both PRxs
and SRxs. We also model the cognitive operation of secondary
devices; as a result, the two processes are dependent on each
other. Our model delivers rich insights on system performance
and design tradeoffs in terms of coverage, node density, outage
probability, and capacity. Our contributions can be summarized
as follows.
First, we provide a novel and mathematically tractable

Boolean disk model for primary and secondary networks, which
is simple yet captures the stochastic nature of the interaction
between the two networks. The coverage reduction of PTxs and
the impact of hidden PTxs on outage, node density and capacity
of STxs are characterized.
Second, we identify several important design parameters:

detection radius (or detection SINR threshold), decoding SINR
threshold and transmit power of STx, which affect the achiev-
able capacity of the secondary network. It is shown that a



conservatively selected detection radius can severely decrease
the capacity of a secondary network and that the optimal
decoding SINR of SRxs depends on the density of PTxs.
We also show that a secondary network with a conservative
detection radius can achieve higher capacity if the associated
primary network has more bursty coverage. While an ideally
chosen detection radius makes the achievable capacity of the
secondary network be independent of the burstiness of primary
network’s coverage, it does introduce interference to PRxs. We
provide rules of thumb on how to tune these design parameters
to maximize the capacity of the cognitive network.

II. SYSTEM MODEL

A. Preliminary Definitions
We first define the notation that will be used throughout this

paper. b(x, r) denote a ball centered at location x ∈ R2 with
radius r. Let ‖x− y‖ denote a distance between two points x
and y in R2 and |A| denote the area of set A ⊂ R2. For a
random variable Q, let LQ (s) ≡ E

[

e−sQ
]

denote the Laplace
transform of the random variable Q.

B. Path loss and Interference Model
We assume free space path loss model d−α given an atten-

uation factor α and distance d between transmitter/interferer
and receiver. When SINR is computed, only the dominant
interferer is considered. If the dominant interferer is within the
interference radius of the receiver, the receiver fails to receive;
otherwise, the interferer is ignored. The interference radius
is conservatively determined based on various factors such
as interference power, signal power, noise and the receiver’s
decoding SINR. In our interference model, we do not take into
account the additive nature of interference. Indeed this so-called
protocol interference model is widely used [2], [13] and this
model produces asymptotically tight estimates [5], [6].

C. Primary Network Model
The primary network consists of a set of PTx-PRx pairs.

We model only the locations of PTxs which for simplicity
are assumed to follow a homogeneous Poisson point process
(HPPP) Πp = {Xi} in R2 with intensity λp. We use Xi

to denote both the i-th PTx and its location in R2. PTxs
transmit with the same transmission power ρp and realize a rate
bp = log(1+βp) bps where βp is the SINR threshold to decode
PTx’s signal. A PRx Y can decode the signal from PTxs if it
is within PTxs’ coverage area, B(Πp, dp) ≡ ∪Xi∈Πpb(Xi, dp)
and, at the same time, is not interfered by a STx; here dp
denotes the target coverage radius of PTxs. A PRx Y can be
interfered by STxs if one or more active STxs exist within its
interference region b(Y, rsp), where rsp is STx’s interference
radius of a PRx w.r.t to a STx.

D. Secondary Network Model
The secondary network consists of a set of STx-SRx pairs.

The STxs are modeled by HPPP Πs = {Zi} with intensity

λs1. We assume that all the STxs sense the medium at the
same time and only STxs which detect the absence of PTxs
attempt to transmit in Aloha fashion. This again represents a
strong simplification. So, it is possible that a SRx is interfered
by one or more other active STxs, causing an outage. Indeed,
this model can be viewed as a snapshot of active secondary
nodes at a typical time slot. Note that not all the STxs are
allowed to transmit since some of them are blocked out by
PTxs and accordingly inactive. We assume that a STx uses a
simple signal energy detection scheme to detect whether there
are PTxs within its detection radius rd. A SRx W is interfered
by PTxs if one or more PTx exist within b(W, rps), where
rps is the interference radius of a SRx w.r.t a PTx. For a
given primary process Πp, we model the active STxs by a
point process Πa

s = Πa
s(Πp) = {Zi ∈ Πs|Zi /∈ B(Πp, rd)}

with intensity λas(z,Πp) = λs1 {z /∈ B(Πp, rd)} at z ∈ R2.
Note that Πa

s is a stationary doubly stochastic or Cox process
with a random intensity measure [15]. Also note that for a given
πp, a realization of Πp, this process of active STx corresponds
to a thinned process, where the thinning is spatially correlated
depending on the πp. Thus, the resulting process is a non-
HPPP. We assume that a STx transmits to a SRx which is
located a fixed distance ds away with transmission power ρs.
Like PTx, a STx transmits bs = log(1 + βs) bps, where βs is
the SINR threshold to decode STx’s signal. The STx’s signal
can interfere with both PRxs and un-intended SRxs; that is,
STx Zi in b(Y, rsp) can interfere with PRx Y and STx Z in
b(W, rss) can interfere with SRx W , where rsp and rss are the
interference radii of a PRx and a SRx w.r.t. a STx respectively.

E. System Model Parameters

In this section, we discuss the system parameter selection.
We shall assume that βp, βs, and the tolerable interference Ip
are specified as part of the system design. Ip corresponds to
the amount of interference that PRxs can tolerate at the edge
of PTxs’ coverage and can be understood as a performance
margin to overcome uncertainty in noise and interference.
Given these parameters, the following system parameters can
be determined. We first determine PTx’s maximum coverage
radius dp from PRx’s successful reception condition, i.e, if a
PRx receives successfully, then its received SINR, assuming
noise η and maximum tolerable interference Ip at the coverage
edge, should be larger than the decoding SINR threshold, which
gives following:

dp ≡ sup

{

d > 0|
ρpd−α

η + Ip
> βp

}

=

(
ρp

(η + Ip)βp

) 1
α

.

Second, if PRx receives PTx’s signal successfully, then, the
SINR at the above receiver should be larger than βp even when
interference from STx is considered: ρpd

−α

η+ρsr−α > βp, this allows
us to define a PRx’s interference radius with respect to a STx
as

rsp(d) ≡ inf

{

r > 0|
ρpd−α

η + ρsr−α
> βp

}

= ρ
1
α
s

(
ρp

dαβp
− η

)− 1
α

.

1Πs is independent from Πp.



Fig. 1: Given no PTx in b(Y, d), the PRx Y can be interfered by
potential STxs in hatched region. The activity of potential STx at z
is determined by the existence of other PTxs in its detection region
b(z, rd).

Note that rsp(d) is a function of d. As a PRx gets closer to its
nearest PTx, rsp gets smaller and the PRx becomes increasingly
robust to interference. However, a PRx near the coverage edge
is more vulnerable to interference. Third, for a SRx to decode
a STx signal, the received SINR at the SRx should be larger
than the decoding threshold βs : ρsd

−α
s

I+η > βs, from which we
define SRx’s maximum tolerable amount of interference

Is ≡ sup

{

I > 0|
ρsd−αs

I + η
> βs

}

=
ρsd−αs

βs
− η. (1)

Fourth, for a SRx to decode a STx signal, the amount of
interference from its nearest PTx should be less than the
maximum tolerable interference: ρpr−α < Is. This leads us
to determine a SRx’s interference radius with respect to a PTx
as

rps ≡ inf
{

r > 0|ρpr
−α < Is

}

=

(
ρp
Is

) 1
α

. (2)

Finally, for a SRx to decode a STx signal, the amount of
interference from the nearest interfering STx should be less than
the tolerable interference: ρsr−α < Is. Thus, SRx’s interfering
radius with respect to a STx is given as

rss ≡ inf
{

r > 0|ρsr
−α < Is

}

=

(
ρs
Is

) 1
α

. (3)

Note that Is, rps, and rss above have been selected conserva-
tively.

F. Parameter Sets for Scenarios

Here, we consider following parameter values: α = 3, No =
−174dBm, η = No × 20 × 106, ρs = 1mW, βs = 20, Is =
5 × 10−8 and ds = 10m, ρp = 100W, βp = 10, Ip = 5η,
dp = 27560m, rps = 1259m, and rss = 27m.

III. PERFORMANCE OF PRIMARY NETWORK

A. Outage Probability of Primary Receiver

In this section, we consider two outage probabilities for a
PRx Y ; first, the conditional outage probability when the PRx
Y is a distance d away from its nearest PTx, which shows
how the outage probability changes as d increases; second, the
covering probability of primary network. Let Po,1(d) denote
the outage probability of a PRx a distance d away from its
nearest PTx.

Theorem 1. (Conditional Outage Probability of a PRx at d
from its nearest PTx) For given λp, λs and dp, a PRx Y ’s
outage probability given d away from its nearest PTx Xi is

Po,1 (d) = 1− 1{d<dp}LL(d,Π(2)
p )

(λs)

where L(d,Π) =
∫

b(Y,rps)\b(Xi,rd)
1{z /∈B(Π,rd)}dz, and Π

(2)
p =

{Πp ∩ b (Y, d)} ∪ {Xi}.

See [16] for proof. L
L(d,Π

(2)
p )

(λs) is expected void proba-
bility of random subset of gray region in Fig.1 of which area
is L(d,Π(2)

p ). Geometrically, the random variable L(d,Π(2)
p )

above denotes a random subset of the set b(Y, rps)\b(Xi, rd)

which is not covered by the Boolean process B(Π(2)
p , rd).

The Laplace transform of L(d,Π(2)
p ) is not easily computable,

see [16] for upper and lower bounds. We define the covering
probability given as follows.

Definition 1. (Covering Probability) Define Pc,1(λp,λs) ≡ 1−
E[Po,1(D)] =

∫ dp

0 Po,1(x)dFD(x) + exp
{

−λpπd2p
}

.

This covering probability is a metric showing the fraction of
area covered by PTxs for given λp. So, the higher it is for fixed
λp, the more efficiently the spectrum is used. Note that the
increase of the number of interferers can decrease the covering
probability or coverage. So, it will be used later to define the
capacity of the primary network in Section V.

IV. PERFORMANCE OF SECONDARY NETWORK
A. Outage Probability of a Typical Secondary Receiver
In this section, we consider the outage probability Po,2

of a typical SRx denoted here by W . This is a conditional
probability conditioned on the existence of an active STx Zi

transmitting to the SRx W as shown in Fig. 2. Note that Zi is
not necessarily the nearest STx to W . This is the worst case
outage probability since we fix ‖W − Zi‖ to ds. For the STx
Zi to be active, there should be no PTxs within STx’s detection
area; so, we condition on the event Πp ∩ b(Zi, rd) = ∅, and
‖W − Zi‖ = ds. Note that STx Zi’s detecting the absence of
PTxs does not guarantee the successful reception at the SRx
W since STx Zi’s detection area may or may not be the super
set of SRx W ’s interference region b(W, rps). So, a potentially
harmful PTx can be located there. The interference from other
STxs to the SRx W can also cause an outage at the SRx W .
The following results captures the impact of the both PTxs and
STxs, on the outage of a typical SRx W .

Theorem 2. (SRx’s Conditional Outage Probability) For given
λp and λs, the outage probability of a SRx W a distance ds
away from its STx Zi is given by

Po,2(λp,λs) = 1− e−λp|b(W,rps)\b(Zi,rd)|L
Q(rss,Π

(3)
p )

(λs),

where Q (r,Π) ≡
∫

b(O,r) 1{z /∈B(Π,rd)}dz, and Π
(3)
p = Πp ∩

b (Zi, rd) ∪ b (W, rps).
V. CAPACITY AND CAPACITY REGION

In this section, we characterize the joint capacity of the
primary and secondary networks. The capacity region is of
interest since it characterizes all the possible operating regimes.
Specifically it is of interest to understand how much capacity



Fig. 2: Conditioned on that there is no PTxs in b (Zi, rd)∪b (W, rps),
the outage of a SRx W can be caused by potential STxs in the
hatched region b (W, rss). Whether a potential STxs, e.g., at location
z ∈ b (W, rss), can give harmful interference to W depends on the
potential PTxs in b (z, rd) \ (b (Zi, rd) ∪ b (W,rps)).

the secondary network can achieve for a given primary network
capacity.

A. Outage Requirement for Secondary Network (ε-constraint)
To this end, we first impose an outage constraint on sec-

ondary network transmission, called the ε-constraint. To support
a certain level of QoS, we require the outage be kept low. We
will of course find that the capacity region changes as a function
of the outage constraint ε. We first update the result on the
contention density taking into account the ε-constraint.

Fact 1. (Maximum Contention Density under ε-constraint)
Under an outage constraint ε for Po,2 (λp,λs), the lower bound
of the contention density λεs is given as follows by letting
ε = Pu

o,2

(

λp,λε,ls

)

with ε̄ = 1− ε, k2 = |b(W, rps)\b(Zi, rd)|

λε,ls =

[

−
k2
q
λp +

1

q
log

1

1− ε

]+

(4)

where q = E

[

Q
(

rss,Π
(3)
p

)]

=
∫

b(W,rss)
exp {−λph (Zi, rd,W, rps, z, rd)} dz which can

be computed numerically. See [16] for details.

B. Capacity of Primary and Secondary Network
The capacity of the primary network is related to the fraction

of covered area (through the covering probability in Definition
1) and the amount of information broadcasted from these
stations, which is defined as follows. For given λp and λεs. The
capacity of the primary network C1 is defined as C1 (λp,λεs) =
bpPc,1 (λp,λεs) .In a similar manner, we can define the capacity
for secondary network. It can be understood as the achievable
throughput given an outage constraint ε, which is defined as
C2,ε (λp,λεs) = bsλεsPtx (1− ε) ,where Ptx = exp

{

−λpπr2d
}

is the transmission probability of a typical STx. Note that if
|b(W, rps)\b(Zi, rd)| = 0 for a fixed C1, the secondary network
behaves like a stand-alone ad-hoc network in the sense that the
C2,ε increases as ε increases until it is maximized at ε = 1− 1

e
and will start to decrease as ε increases over 1− 1

e .

C. Capacity Region
Based on the definitions of C1 and C2, we now define the

capacity region Cε, which is the set of achievable operating
points (C1, C2) subject to outage constraint.
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s (0) for broad ranges of
λp. The limiting capacity of C1 corre-
sponds to log2(1+βp) = 3.46. Note
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Definition 2. The joint capacity region is defined as

Cε =
{

(x, y) ∈ R
2
+|∃λp ≥ 0 s.t. x = C1 (λp) , y ≤ C2,ε (λp)

}

.

VI. IMPACT OF SYSTEM PARAMETERS
A. Impact of Detection Radius and Optimization
We consider the case where we need to determine rd. Let

d1 = dp + rsp(dp) and d2 = ds + rps and suppose that the
target decoding SINR of the two networks are given as βp and
βs. Then, Cε,l

2 below is a function of rd:

Cε,l
2 (rd) = log (1 + βs) λ

ε,l
s (rd) (1− ε) exp

{

−λpπr
2
d

}

.

Recall that λε,ls in (4) has k2 ≡ |b(W, rps)\b(Zi, rd)| term,
which is a function of rd. Suppose rd < d2. Then, increasing
rd makes k2 → 0, which consequently reduces harmful interfer-
ence from hidden PTxs and accordingly the outage probability
decreases. Thus, increasing rd(< d2) increases λε,ls . Note that
q is also a decreasing function of rd but hardly changes. Once
if rd ≥ d2, then, we have k2 = 0 and λε,ls increases very slowly
and looks constant. We observe that if rd < d2 increasing
λε,ls dominates decreasing exp{−λpπr2d}, which makes Cε,l

2

increasing. While if rd ≥ d2 the latter dominates and Cε,l
2

starts to decrease. So, from the perspective of reducing the
impact from hidden PTxs, rd = ds + rps is a near optimal
choice so as to maximize capacity. But along with maximizing
Cε,l

2 it is also necessary to protect primary receivers (note that
this maximizes C1). So, rd should be chosen as follows.

Rule of Thumb 1. (RT1) For given d1 = dp + rsp(dp) and
d2 = ds + rps, choose the the detection radius of STxs as
rd = max{d1, d2}. It is the sub-optimal choice for maximizing
secondary capacity.

Increasing rd further is not helpful to increasing capacity since
it exponentially reduces transmission opportunities.
Fig.3a shows the change in the capacity region for various

values of rd when d1 = 2.02 × 104 and d2 = 1269.9. Since
d2 < d1 in our setting, increasing rd decreases Cε,l

2 due to
decreasing transmission opportunity.

B. Impact of Decoding SINR and Optimization
Consider the case where we need to determine βs given all

other parameters except rd which is a function of βs by RT1.
The transmission capacity of secondary network depends on



several terms which increase (↗) and decrease (↘) with βs as
follows:

Cε,l
2 ( βs

︸︷︷︸

↗

) = c2 log(1 + βs)
︸ ︷︷ ︸

↗

(1/q(βs))
︸ ︷︷ ︸

↘

exp{−λpπrd(βs)
2}

︸ ︷︷ ︸

↘
(5)

for some constant c2 > 0. Note that as βs increases rss ≈
dsβ

1/α
s increases, and accordingly q(βs) also increases. Also

as βs increases, rps increases, which eventually increases rd
since rd is assumed to be selected according to the RT1. This
exhibits the tradeoff between the three terms in (5). Increasing
the transmission rate (or increasing βs) makes the SRx more
sensitive to interference and accordingly under a fixed ε allows
fewer concurrent transmitters (decreasing node density) and
may discourage transmission attempts(decreasing transmission
opportunity). Since Cε,l

2 (βs) is a product of both increasing
and decreasing terms there exists a unique maximum point
β∗s maximizing Cε,l

2 , which is a function of λp. For λp = 0,
we can analytically find β∗s after ignoring noise term. Setting
dCε,l

2 /dβs = 0 gives β∗s (0) = exp
{

W0

(

− α
2eα/2

)

+ α
2

}

−1 for
α > 2. For λp > 0, β∗s (λp) can be found numerically.
Suppose that a minimum required data rate (or equivalently

decoding SINR) for secondary node’s applications is specified
as a design requirement, denote it by βms . Then, from the above
discussion, it follows that there exists an optimal decoding
SINR β∗s (λp), which suggests following.

Rule of Thumb 2. (RT2) For a given λp and an application-
required decoding SINR βms , the operating decoding SINR
chosen as βos = max{β∗s (λp),β

m
s } maximizes the secondary

capacity while satisfying the application requirement.

Replacing β∗s (λp) in RT2 with β∗s (0) makes the rule of thumb
easy to use but gives sub-optimal performance. Fig. 3b shows
the changes in the capacity region under various βs. By the
definition of β∗s (λp), C

ε,l
2 is maximized at βs = β∗s (λp) for

given λp. However, we have β∗s (λp) ≈ β∗s (0) = 1.4 for broad
ranges of λp in Fig.3b. Note that the capacity region is roughly
bounded by linear boundary, this is because we have dp ≈ rd,
then Pc,1 ≈ e−λpπr

2
d and from the definition of C1 and Cε,l

2 , it
is straightforward to show the linear relationship.
C. Impact of Transmit Power of STxs and Optimization
In this section, we show the existence of an optimal transmit

power for secondary nodes which maximizes the secondary
capacity. An approximation of the optimal transmit power is
provided.
We make following assumptions.

(A1) Let the detection radius of STxs be determined as rd =
max{dp + κrsp(dp), ds + rps} for some κ ≥ 0.2
(A2) Assume that ε-contention density λεs is a constant with
respect to dp and ρs, though it changes slowly as a function of
them.
(A3) Assume that it is required by system design requirements
that secondary nodes’ tolerable interference level should be
at least Imin

s , which consequently determines the minimum
required transmit power ρmin

s = inf
{

ρs > 0| ρsd
−α
s

η+Imin
s

> βs
}

=

2In Section VI-C, we assume κ = 1.

βsdαs (η + Imin
s ).3

λεs is a constant due to (A2) and thus we optimize Ptx(ρs)
over ρs to maximize Cε,l

2 . Note that rd = max{d1, d2}
chosen by (A1) is a function of ρs. Specifically, d1(ρs) =
dp + rsp(dp, ρs) is a monotonically increasing function of ρs,
while d2(ρs) = ds + rps(ρs) is a monotonically decreasing
function of ρs. Thus, there exist an optimal ρs minimizing
rd(ρs). Note that minimizing detection radius rd maximizes the
transmission probability Ptx, and accordingly maximizes Cε,l

2 .
Let ρ∗s be the optimal transmit power, then dp + rsp(dp, ρ∗s) =
ds + rps(ρ∗s) holds. Since it is hard to find a closed form
expression for ρ∗s , we find an approximation ρ̂∗s using the fact
that dp + rsp(dp, ρ∗s) ≈ dp. With the approximation, solving
rps(ρ∗s) ≈ dp − ds gives ρ∗s ≈ βsdαs

(

η + ρp
(dp−ds)α

)

. Then
considering the minimum required transmit power, we have an
approximated value of ρ∗s given as follows.

Rule of Thumb 3. (RT3) For a given secondary system design
requirements βs, ds and ρmin

s , choose the transmit power of
secondary node as ρ̂∗s = max

{

ρmin
s ,βsdαs

(

η + ρp
(dp−ds)α

)}

. It
is a sub-optimal choice for maximizing the secondary capacity.

Fig.4a shows Cε,l
2 as a function of ρs, which is maximized at

ρs = ρ∗s . The vertical line denotes the approximation ρ̂∗s , which
is quite close to the optimal value. If ρ∗s < ρs, increasing trans-
mit power ρs increases detection radius rd = dp + rsp(dp, ρs)
and makes it more conservative, which accordingly results
in a capacity loss. While if ρs < ρ∗s , decreasing transmit
power ρs increases detection radius rd = ds + rps(ρs) since
decreasing transmit power ρs makes SRx more vulnerable to
the interference from PTxs, similarly which causes the loss of
secondary capacity.

D. Impact of Coverage’s Burstiness on Secondary Capacity
In this section, we show how the burstiness of a primary

network’s coverage affects the capacity of an associated sec-
ondary network For that end, we define the notion of burstiness
for Boolean process and make assumptions for simple analysis.
We adopt the definition of burstiness introduced in [17]. For

two given primary networks A and B with the same fixed
coverage c, we say that the Network A has a more bursty
coverage than the Network B if the Network A has a larger
coverage radius than that of the Network B. Fig. 3 shows the
realizations of two primary networks’ coverage with the same
coverage area, where the union of bright gray discs is the
coverage of PTxs and the union of dark gray regions around it
is the guard band to protect PRxs from STxs. The thickness of
the band is given as κrsp(dp) for given rsp(dp) and κ ≥ 0 is a
measure of the conservativeness of detection radius. If κ = 0,
there is no guard band, otherwise the guard band is chosen
conservatively.
In this section, we need assumptions (A1) and (A2) with

following additional assumption.
(A4) Assume the primary networks of interest have the fixed

3Note that ρs, ds, and Is have dependency among them. In previous sections,
Imin
s was the function of given ρs and ds. While in this section Imin

s and ds
are given, which accordingly determines ρmin

s .



(a) Case 1 with dp1 (b) Case 2 with dp2

Fig. 3: Two realizations of primary network with the same coverage
but different coverage radii were shown. Coverage and guard region
were shown as bright and dark gray region respectively. Note that the
thickness of guard band is the same, i.e., κrsp(dp1) = κrsp(dp1).

coverage fraction 0 < c < 1, i.e., P (O ∈ B(Πp, dp)) = c
which gives a following condition: 1− exp{−λpπd2p} = c.
We need the assumption (A2) to make the optimization

process simple. Note that Cε,l
2 is proportional to both λεs and

Ptx, where both terms are the functions of dp. However, we
maximize Ptx only over dp since λεs varies slowly over dp.
With the above settings, we have following observations.

Proposition 1. Under the assumptions, if rd = dp (or κ =
0), then the capacity of the secondary network is not affected
by the burstiness of the primary network’s coverage (or dp).
If rd > dp (or κ > 0), then the capacity of the secondary
network decreases as the primary network’s coverage gets less
bursty. The capacity decrease depends on the conservativeness
of detection radius κ.

Note that κ = 0 implies there is no conservativeness in
detection radius and no guard bands, then it is straightforward
to see that Cε,l

2 is a constant since λεs and Ptx are constants
by (A2) and (A4) respectively. However, if κ > 0, the conser-
vativeness of the detection radius affects Cε,l

2 . Intuitively, this
happens because the area consumed by the guard band increases
as the primary network becomes less bursty (or smaller dp),
which results in a smaller transmission probability. That is,
Ptx = exp{−λpπr2d} = (1 − c)γ

2 with γ = 1 + κrsp(dp)
dp

decreases as dp decreases. If dp approaches to 0, then all the
non-covered region is used for guard band purpose and there is
no room for secondary nodes to operate, leading to zero capac-
ity (Cε,l

2 = 0). Fig. 4b shows the relation between burstiness
and capacity under various conservativeness. It is clearly shown
that in general more bursty network has higher Cε,l

2 and less
conservative detection radius admits higher capacity Cε,l

2 . Note
that κ = 0 case has almost flat capacity Cε,l

2 , which makes the
assumption (A2) valid.

VII. CONCLUDING REMARKS
We have explored the interdependency between the primary

and secondary networks with different access priorities to
single frequency band in terms of the outage probability and
joint capacity region. The model suggests that the detection
radius(or detection sensitivity) of cognitive device needs to be
determined carefully not only to protect primary receivers but
also to minimize the impact from hidden primary transmitters.
Along with this, we have shown that there exists an optimal
decoding SINR and transmit power of cognitive devices that
maximizes the capacity of cognitive network. Furthermore we
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Fig. 4

show that primary networks with bursty coverage admit higher
secondary capacity. We note that these parameters (except
primary transmit power) are easily adjustable without requiring
complex algorithms or hardware modification.
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